If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6c-9c^2=0
a = -9; b = 6; c = 0;
Δ = b2-4ac
Δ = 62-4·(-9)·0
Δ = 36
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{36}=6$$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-6}{2*-9}=\frac{-12}{-18} =2/3 $$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+6}{2*-9}=\frac{0}{-18} =0 $
| 2f+f+f-9=+1+4 | | 333-k=192 | | 5w=12+w | | 2+8=7x-37 | | 133=7+10k | | 2x-9+10=x+40-100 | | 4x+2x+2=24 | | 4x+50=3x+20 | | 2x-4=x-70 | | 6x-5x-60=-2x+3 | | m–3.5=9.2. | | 2x-4=-70 | | 9n-14=6n+17 | | -7/6u=35 | | x+(x*0.05)=300000888 | | 2(3x²-1)=6x+5x | | 6u+-26=-72 | | 19=16y-121 | | 4x-3=2x+6(2+3) | | (3f-8)/2=80 | | 15-10x=-7 | | 6-c=5+4c | | x-7=x-4 | | 1j=10^-6j | | 3x-12=4x+6(12+3) | | 3x-12=4x+6(12x+3) | | (4+x)/3=5/6 | | (2x-100)/200=1000 | | 80=w/6 | | -5/6(5x+22)=10 | | 6w+-7=8+-2w | | 8+h/4=13 |